Spectros Associates Proudly Presents the Three Day Short Course

FTIR Analysis of Trace Evidence

Instructor: Dr. Brian C. Smith

A comprehensive 3-day look at how to use an FTIR to obtain spectra of trace evidence, and how to interpret the spectra of these materials.

Day 1

I. The Basics of FTIR

A. Introduction to Infrared Spectroscopy

- 1. The Properties of Light
- 2. What is an Infrared Spectrum?
- 3. Infrared Spectroscopy: Good and Bad Points

B. The Advantages of FT-IR

- 1. Signal-to-Noise Ratio (SNR)
- 2. The Throughput Advantage
- 3. The Multiplex Advantage

C. The Disadvantage of FTIR: Water and CO₂ Peaks

II. How an FT-IR Works

A. Interferometers & Interferograms

B. How a Spectrum is Produced

- 1. The Fourier Transform
- 2. Background & Single Beam Spectra

C. Optimizing Resolution & Minimizing Noise

D. FTIR Hardware

- 1. Infrared Sources
- 2. Beamsplitters
- 3. Detectors
- 4. The He-Ne Laser

E. Measuring Spectral & Instrument Quality

III. Spectral Manipulations: Handling Mixture Spectra

A. The Laws of Spectral Manipulation

- **B. Spectral Subtraction**
 - 1. Theory
 - 2. Optimizing Subtraction Results
 - 3. Spotting Artifacts

C. Library Searching

- 1. Background & Theory
- 2. The Search Process

- 3. Properly Interpreting Search Results
- 4. Subtract & Search Again: The Analysis of Mixtures

IV. Infrared Microscopes

A. How an Infrared Microscope Works

B. Preparing Samples

- 1. Transmittance Analysis
- 2. Reflectance Analysis

C. Forensic Applications

- 1. Powders
- 2. Paint Chips
- 3. Single Fibers
- **D.** Reflectance Sampling

V. Microscopic Attenuated Total Reflectance (ATR)

- A. Micro-accessory Design
- **B.** Variables Affecting Spectral Appearance
- **C.** Applications

Day 2

I. The Fundamentals of Infrared Interpretation

- A. Molecular Vibrations
- **B.** The Meaning of Peak Positions, Heights, and Widths

C. Different Types of Infrared Features

D. A Systematic Approach to Spectral Interpretation

- 1. Dealing with Mixtures
- 2. Performing Identities Properly
- 3. A Systematic 10-Step Approach to Infrared Interpretation

II. Functional Group Analysis of Saturated Hydrocarbons

A. Alkanes: C-H Stretching and Bending Vibrations

- 1. Straight Chain Alkanes
- 2. Estimating Hydrocarbon Chain Length
- 3. Branched Alkanes

III. Unsaturated Hydrocarbons

A. Alkenes:

- 1. Substitution Patterns
- 2. Distinguishing Cis/Trans Isomers
- 3. Natural & Synthetic Rubbers

B. Aromatic Hydrocarbons

- 1. Mono-Substituted Benzene Rings
- 2. Distinguishing Ortho, Meta, and Para Isomers

IV. Molecules with C-O Bonds

A. Alcohols & Phenols

- 1. Differentiating Primary, Secondary, and Tertiary Alcohols
- 2. Phenols
- 3. Distinguishing Alcohols from Water

B. Ethers

- 1. Saturated & Branched Ethers
- 2. Aromatic Ethers
- 3. The Methoxy Group

Day 3

V. The Carbonyl (C=O) Functional Group

- A. Ketones
- B. Aldehydes
- C. Carboxylic Acids
- **D.** Carboxylates (Soaps)
- E. Esters: The Rule of 3
- F. Organic Carbonates

VI. Organic Nitrogen Compounds

A. Amides

- 1. Structure, Nomenclature, and Bonding
- 2. Primary Amides
- 3. Secondary Amides
- 4. Proteins

B. Imides

C. Amines

- 1. Distinguishing the Three Types of Amines
- 2. Methyl Groups Bonded to Nitrogen
- 3. Amine Salts

D. Nitriles

E. The Nitro Group

VII. Introduction to the Infrared Spectra of Polymers

- A. Low and High Density Polyethylene
- **B.** Polypropylene
- C. Polystyrene
- **D.** Polyethylene Terephthalate (PET)
- **E.** Acrylates

VIII. Spectra of Polymers with Complex Structures

- A. Polyurethanes
- **B.** Polycarbonates: Lexan
- C. Polyimides: Kapton D. Teflon

IX. Inorganics

- A. Sulfates
- **B.** Silica
- C. Nitrates
- **D.** Inorganic Carbonates
- E. Phosphates